Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
- 오스트리아
- 교환학생
- 특별 메소드
- set add
- set method
- 최소공배수
- 나의23살
- fluent python
- 최대공약수
- 딥러닝
- cost function
- 최소제곱법
- Linear Regression
- 청춘 화이팅
- 미래에셋해외교환
- anaconda 가상환경
- 유럽
- 유럽 교환학생
- gradient descent
- Deeplearning
- m1 anaconda 설치
- Machine learning
- special method
- 2022년
- 선형회귀
- Python
- 양극재
- Andrew ng
- 이차전지
- 미래에셋 장학생
Archives
- Today
- Total
Done is Better Than Perfect
[ Paper Review ] Strategically switching metaheuristics for effective parameter estimation 본문
🔋 이차 전지/논문 리뷰
[ Paper Review ] Strategically switching metaheuristics for effective parameter estimation
jimingee 2024. 9. 16. 23:52Strategically switching metaheuristics for effective parameter estimation of electrochemical lithium-ion battery models
- Journal : Energy Storage ’23 (IF 8.9)
- 10 citations
[ summary ]
- SIA의 23개 baseline function 중 10개 선택 (특정 metaheuristic에 효과적인 모양) (table 2)
- 10개의 baselie function 학습한 FuncNet(CNN)을 사용해 object function와 가장 유사한 baseline function 식별 ⇒ FuncNet으로 objective function identify함
- CNN에서 식별된 가장 유사한 baseline function을 기반으로 적절한 metaheuristic recommend
- local optima에서 벗어나기 위해 metaheuristic suitability tests, particle resampling 수행
- 실험 : ISC-free P2D 및 ISC embedded P2D(ISC-P2D) 모델을 사용하여 성능 비교
1. Problem Statement
- Beneficial P2D models must estimate relatively many parameters
- existing method : gradient-based optimization algorithms & various metaheuristics
- Swarm intelligence-based algorithms (SIAs) is recently developed as data-efficient metaheuristics
- problem :
- SIA perform differently according to a given objective function
- There is no guideline that specifies the SIA suitable for the objective function
- problem :
⇒ For accurate P2D model parameter estimation, propose a systematic method for applying a proper SIA at the right iteration
2. Contribution
- A systematic guide is proposed to strategically switch numerous metaheuristics(SSM)
- The best metaheuristic is recommended by the identified objective function
- The outstanding parameter estimation performance of SSM is demonstrated
3. Methodology
Propose strategically switching metaheuristics (SSM)
1️⃣ Select 10 baseline functions as labeled classes among 23 baselines → two baseline functions for each metaheuristic
- 23 baselines are well used in metaheuristics approach
- effectively optimized for certain metaheuristics
- provide a fair chance to each metaheuristic
2️⃣ Identify baseline function, metaheuristic
- Train FuncNet using 10,000 data sets for each class
- FuncNet is based on CNN (FuncNet work as metaheuristic algorithm selector)
- Find the most similar baseline function with object function → based on current particle distribution
- Recommend the corresponding effective metaheuristic
- +) Select baseline function in the direction that objective function gradually optimizes in the parameter space
- Switching criterion
- Set criteria for evaluating the performance of currently used baseline function
- Whenever the inequality is met, have a chance to improve the metaheuristic
3️⃣ Overall, SSM (strategically switching metaheuristics )
- At each iteration, SSM
- evaluates the objective function values for all particles (3)
- updates SSM metaheuristic according to the objective function (3) and criterion (4)
- Currently employed metaheuristic can change to a new one for the better → proper convergence
[ SSM workflow ]
Iteration이 지날 수록 objective function과 유사한 baseline (metaheuristic) 선택
- violet box : algorithm selector (FuncNet)
- red box : parameter estimation
4️⃣ Get global optimal solution → Particle resampling
- If solutions are likely to be in a local optimal solution (if there is too little variation)
- All particles are reinitialized in the exploratory search space outside the current particle distribution
- Particle Resampling = Select 22 parameter combinations
4. Experiment Result Analysis
- Cell : lithium cobalt oxide (LCO)/graphite batteries at the beginning-of-life (BOL)
- Profile : CCCV (constant current constant voltage) with reference input current of 0.5 C-rate
- Model : ISC-free P2D, ISC embedded P2D(ISC-P2D)
- In ISC-P2D model, terminal voltage difference between ESC and ISC was negligible → ESC can use as alternative of ISC
4.1 Experiments with ISC-free battery cell
- (a) : SSM outperforms other SIAs
- RMSE of SSM decreases steadily → adaptively switching metaheuristics and particle resampling
- (b) : Escape local optima
- Mainly selected GWO for fast convergence
- To escape from local optima through particle resampling\
- SSM has the lowest standard deviations in both voltage RMSE and estimated parameter
- Implies that the SSM produces more reliable results
4.2 Experiments with ISC-affected battery cells
- Use actual battery with an ESC resistance of 50 Ω
- (a)-(b) : Simulated and actual voltage response
- (a) : CCCV profile / (b) : dynamic profile → RMSE : 16.xx mV
- (c)-(f) : Simulated and actual voltage response error in CCCV, Dynamic profile
⇒ estimated P2D model parameters well describe real physical lithium-ion battery cells
4.3 Experiments for various operation conditions
- 8 experiments on ISC, profile, and temperature
- parameter estimation method : GWO, SSM
- estimate 22 parameters in the ISC-P2D model
- Estimation accuracy : the SSM surpasses the GWO by 3.51 mV
- In most cases, the SSM has the outstanding voltage response on the rest region
- In case 4, SSM’s RMSE is higher than GWO’s but the SSM better captures the subtle effects of an ISC
5. Conclusion
- Proposed SSM to fully exploit the shape of an objective function around sample points
- By estimating the ISC resistance and other electrochemical parameters, the proposed SSM has effective parameter estimation performance.
- further study
- Test (1) other commercial batteries and (2) severe low and high temperature conditions
Background Knowledge
- ISC-P2D model
- ISC resostamcd amd current flowing relationship
- Fig 1 - (a)에서 ISC resistance가 포함된 P2D 모델
- separator domain에 effective conductivity (𝜎 eff 𝑠)추가 →internal short circuit 생성
- Fig 1 - (b)(c)는 ESC resistance가 포함된 P2D 모델
- ISC resistance은 ESC와 동일하게 구현 (가정 : electrode와 electrolye resistance 무시할 수 있음)
- 연구에서는 ESC를 통해 ISC resistance 구현 → parameter estimation 성능 실험
- ISC resistance 측정 어려움 → ESC resistance를 대안으로 사용
- Swarm intelligence-based algorithms (SIAs)
- One of metaheuristics, provide sufficiently good optimal solutions with tolerable computational effort
- 동작 방법
- start with particles (or entities) randomly located in a search space.
- update particle positions using their own unique strategies each tim
- 논문에서는 5가지 SIA 방법 사용됨 → 23개의 baseline function 사용해서 계산됨
- bald eagle search (BES), grey wolf optimizer (GWO), honey badger algorithm (HBA), particle swarm optimizer (PSO), and salp swarm algorithm (SSA)
- 각 SIA have their own optimizing strategies (baseline functions) favorable to certain
'🔋 이차 전지 > 논문 리뷰' 카테고리의 다른 글
[ Paper Review ] Capacity Estimation Through Knowledge Transfer (5) | 2024.09.27 |
---|---|
[ Paper Review ] Parameters for degradation diagnosis (0) | 2024.09.01 |
[논문 리뷰] 배터리 열화의 핵심 문제 (key issue of the lithium ion battery degradation) (1) | 2024.08.22 |
Comments