Done is Better Than Perfect

[ Paper Review ] Strategically switching metaheuristics for effective parameter estimation 본문

🔋 이차 전지/논문 리뷰

[ Paper Review ] Strategically switching metaheuristics for effective parameter estimation

jimingee 2024. 9. 16. 23:52

Strategically switching metaheuristics for effective parameter estimation of electrochemical lithium-ion battery models

  • Journal : Energy Storage ’23 (IF 8.9)
  • 10 citations

 

[ summary ]

  • SIA의 23개 baseline function 중 10개 선택 (특정 metaheuristic에 효과적인 모양) (table 2)
  • 10개의 baselie function 학습한 FuncNet(CNN)을 사용해 object function와 가장 유사한 baseline function 식별 ⇒ FuncNet으로 objective function identify함
  • CNN에서 식별된 가장 유사한 baseline function을 기반으로 적절한 metaheuristic recommend
  • local optima에서 벗어나기 위해 metaheuristic suitability tests, particle resampling 수행
  • 실험 : ISC-free P2D 및 ISC embedded P2D(ISC-P2D) 모델을 사용하여 성능 비교

 

1. Problem Statement

  • Beneficial P2D models must estimate relatively many parameters
    • existing method : gradient-based optimization algorithms & various metaheuristics
  • Swarm intelligence-based algorithms (SIAs) is recently developed as data-efficient metaheuristics
    • problem :
      • SIA perform differently according to a given objective function
      • There is no guideline that specifies the SIA suitable for the objective function

⇒ For accurate P2D model parameter estimation, propose a systematic method for applying a proper SIA at the right iteration

 

 

2. Contribution

  • A systematic guide is proposed to strategically switch numerous metaheuristics(SSM)
  • The best metaheuristic is recommended by the identified objective function
  • The outstanding parameter estimation performance of SSM is demonstrated

 

3. Methodology

Propose strategically switching metaheuristics (SSM)

 

 

1️⃣ Select 10 baseline functions as labeled classes among 23 baselines → two baseline functions for each metaheuristic

  • 23 baselines are well used in metaheuristics approach
  • effectively optimized for certain metaheuristics
  • provide a fair chance to each metaheuristic

 

 

2️⃣ Identify baseline function, metaheuristic

  • Train FuncNet using 10,000 data sets for each class
  • FuncNet is based on CNN (FuncNet work as metaheuristic algorithm selector)
    • Find the most similar baseline function with object function → based on current particle distribution
    • Recommend the corresponding effective metaheuristic
    • +) Select baseline function in the direction that objective function gradually optimizes in the parameter space

 

 

  • Switching criterion
    • Set criteria for evaluating the performance of currently used baseline function
    • Whenever the inequality is met, have a chance to improve the metaheuristic

 

 

 

3️⃣ Overall, SSM (strategically switching metaheuristics )

  • At each iteration, SSM
    1. evaluates the objective function values for all particles (3)
    2. updates SSM metaheuristic according to the objective function (3) and criterion (4)

  • Currently employed metaheuristic can change to a new one for the better → proper convergence

 

 

 

[ SSM workflow ]

Iteration이 지날 수록 objective function과 유사한 baseline (metaheuristic) 선택

  • violet box : algorithm selector (FuncNet)
  • red box : parameter estimation

 

4️⃣ Get global optimal solution → Particle resampling

  • If solutions are likely to be in a local optimal solution (if there is too little variation)
    • All particles are reinitialized in the exploratory search space outside the current particle distribution
    • Particle Resampling = Select 22 parameter combinations

 

4. Experiment Result Analysis

  • Cell : lithium cobalt oxide (LCO)/graphite batteries at the beginning-of-life (BOL)
  • Profile : CCCV (constant current constant voltage) with reference input current of 0.5 C-rate
  • Model : ISC-free P2D, ISC embedded P2D(ISC-P2D)
    • In ISC-P2D model, terminal voltage difference between ESC and ISC was negligible → ESC can use as alternative of ISC

 

 

4.1 Experiments with ISC-free battery cell

  • (a) : SSM outperforms other SIAs
    • RMSE of SSM decreases steadily → adaptively switching metaheuristics and particle resampling
  • (b) : Escape local optima
    • Mainly selected GWO for fast convergence
    • To escape from local optima through particle resampling\

 

  • SSM has the lowest standard deviations in both voltage RMSE and estimated parameter
    • Implies that the SSM produces more reliable results

 

4.2 Experiments with ISC-affected battery cells

  • Use actual battery with an ESC resistance of 50 Ω

  • (a)-(b) : Simulated and actual voltage response
    • (a) : CCCV profile / (b) : dynamic profile → RMSE : 16.xx mV
  • (c)-(f) : Simulated and actual voltage response error in CCCV, Dynamic profile

⇒ estimated P2D model parameters well describe real physical lithium-ion battery cells

 

 

4.3 Experiments for various operation conditions

  • 8 experiments on ISC, profile, and temperature
    • parameter estimation method : GWO, SSM
    • estimate 22 parameters in the ISC-P2D model

  • Estimation accuracy : the SSM surpasses the GWO by 3.51 mV

 

 

  • In most cases, the SSM has the outstanding voltage response on the rest region
  • In case 4, SSM’s RMSE is higher than GWO’s but the SSM better captures the subtle effects of an ISC

 

5. Conclusion

  • Proposed SSM to fully exploit the shape of an objective function around sample points
  • By estimating the ISC resistance and other electrochemical parameters, the proposed SSM has effective parameter estimation performance.
  • further study
    • Test (1) other commercial batteries and (2) severe low and high temperature conditions

 

 


Background Knowledge

  • ISC-P2D model
    • ISC resostamcd amd current flowing relationship

 

  • Fig 1 - (a)에서 ISC resistance가 포함된 P2D 모델
    • separator domain에 effective conductivity (𝜎 eff 𝑠)추가 →internal short circuit 생성
  • Fig 1 - (b)(c)는 ESC resistance가 포함된 P2D 모델

 

  • ISC resistance은 ESC와 동일하게 구현 (가정 : electrode와 electrolye resistance 무시할 수 있음)
  • 연구에서는 ESC를 통해 ISC resistance 구현 → parameter estimation 성능 실험
    • ISC resistance 측정 어려움 → ESC resistance를 대안으로 사용

 

 

  • Swarm intelligence-based algorithms (SIAs)
    • One of metaheuristics, provide sufficiently good optimal solutions with tolerable computational effort
    • 동작 방법
      • start with particles (or entities) randomly located in a search space.
      • update particle positions using their own unique strategies each tim
    • 논문에서는 5가지 SIA 방법 사용됨 → 23개의 baseline function 사용해서 계산됨
      • bald eagle search (BES), grey wolf optimizer (GWO), honey badger algorithm (HBA), particle swarm optimizer (PSO), and salp swarm algorithm (SSA)
      • SIA have their own optimizing strategies (baseline functions) favorable to certain

 

 

Comments